Indian Statistical Institute M.Math. II Year First Semester Exam 2006-07 Advanced Probability Date:27-11-06

Time: 3 hrs

Max. Marks: 90 Instructor: B Rajeev

- 1. (a) Suppose (X_n) is an independent sequence of random variables. For c > 0 let $X_n^c := X_n I_{(|X_n| \le c)}$. Suppose that $\sum P(|X_n| > c), \sum E X_n^c, \sum \operatorname{Var}(X_n^c)$ are all convergent. Show that $\sum X_n$ converges almost surely. Hint : If $E X_n = 0$ and $\sum \operatorname{Var}(X_n) < \infty$ then $\sum X_n$ converges a.s. (10)
 - (b) By considering the distributions of $\frac{X_1+\dots+X_n}{n}$ where the (X_n) are appropriate i.i.d's with $P(X_n = \pm 1) = 1$, show that a sequence of distribution functions converging weakly to a limit distribution need not converge to the limit distribution at the points of discontinuity of the limit distribution. (10)
 - (c) Let $h : \mathbb{R} \to \mathbb{R}$ be measurable and let $D_h = \{x : h \text{ is not} continuous at x\}$. If $\mu_n \Rightarrow \mu$ and $\mu(D_h) = 0$ then show that $\mu_n \circ h^{-1} \Rightarrow \mu \circ h^{-1}$. (6)
- 2. Let for each $n \ge 1$, $(X_{nk})_{k=1}^{r_n}$ be a finite sequence of independent random variables with $EX_{nk} = 0$ and $\sigma_{nk}^2 := EX_{nk}^2 < \infty$. Let $S_n = X_{n1} + \cdots + X_{nr_n}$ and $s_n^2 = Var(S_n)$. Suppose that Lyapunov's condition holds viz. for some $\delta > 0$

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{k=1}^{r_n} E |X_{nk}|^{2+\delta} = 0$$

Show that $\frac{S_n}{\sqrt{s_n}} \Rightarrow N(0, 1).$ (6)

- 3. Let $\{\mu_i : i \ge 1\}$ be sequence of probability measures on \mathbb{R} . Show that there exists a stochastic process (X_n) on some probability space such that for each n, X_n has distribution μ_n . (11)
- 4. (a) Let F be a continuous distribution function on \mathbb{R} . Show that $F = F_{ac} + F_s$, where F_{ac} is absolutely continuous and F_s is singular. Show that the decomposition is unique. (10)

- (b) Let X be an integrable random variable on (Ω, \mathcal{F}, P) . Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -field. Show that the conditional expectation $E[X|\mathcal{G}]$ exists and is unique upto null sets. (10)
- (c) Let X be a \mathbb{R}^{j} valued random variable and Y be a \mathbb{R}^{k} valued random variable on a probability space (Ω, \mathcal{F}, P) . Suppose \mathcal{G} is a sub σ -field of \mathcal{F} . Suppose that X is \mathcal{G} measurable and Y is independent of the sigma field \mathcal{G} . Then show that

$$P((X,Y) \in H | \mathcal{G}) = f(X)$$

where $f(x) = P((x,Y) \in H)$. (10)

5. (a) Let X be a random variable on (Ω, \mathcal{F}, P) and let \mathcal{G} be a sub σ -field of \mathcal{F} . Let $\phi : \mathbb{R} \to \mathbb{R}$ be a measurable function such that $\phi(X)$ is integrable. Show that

$$E[\phi(X)|\mathcal{G}](\omega) = \int_{\mathbb{R}} \phi(x)\mu(dx,\omega)$$
 a.s

where $\mu(dx, \omega)$ is the conditional distribution of X given \mathcal{G} . (12).

(b) Let $(X_n, \mathcal{F}_n)_{n\geq 0}$ be a martingale. Let $(W_n)_{n\geq 1}$ be a sequence of non constant, bounded random variables. State sufficient conditions on the sequence (W_n) so that (Y_n, \mathcal{F}_n) is a martingale, where

$$Y_n := X_0 + W_1 \Delta X_1 + \dots + W_n \Delta X_n, \quad n \ge 0.$$

Prove your result.

(5)